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Abstract 

In this study, human behavior recognition in wearable devices is introduced and analyzed to 

monitor and improve health and daily activities. As technology continues to advance, these 

devices will offer even more personalized insights, enabling individuals to lead healthier and 

more informed lives. 
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1. Introduction 
Human behavior recognition (HBR) has gained 

significant attention in recent years, especially with 

the rise of wearable devices [1,2]. These devices, 

which range from fitness trackers to smartwatches, 

are equipped with various sensors capable of 

monitoring physical activity, biometric signals, and 

environmental data [3]. By analyzing this data, 

wearable devices can recognize patterns in a person’s 

behavior, offering insights into health, fitness, and 

daily activities [4]. This capability has wide 

applications, from healthcare monitoring to 

personalized recommendations for improving quality 

of life [5]. 

There are several key technologies behind human 

behavior recognition. Wearable devices are typically 

equipped with multiple sensors such as 

accelerometers, gyroscopes, heart rate monitors, and 

even electrodermal activity sensors [6,7]. These 

sensors continuously collect data on the user's 

movements, posture, heart rate, and other 

physiological parameters [8]. Once data is collected, 

it is processed using machine learning algorithms and 

pattern recognition techniques [9]. These algorithms 

analyze time-series data from the sensors to detect 

specific behaviors or movements, such as walking, 

running, sleeping, or even more complex actions like 

typing or driving [10]. The data from wearable 

sensors is fed into machine learning models, 

particularly deep learning or supervised learning 

approaches that have been trained on large datasets to 

classify behaviors [11]. Over time, the system 

becomes more accurate at distinguishing between 

different activities and recognizing behavioral 

patterns [12]. Some wearable devices also integrate 

contextual information, such as location data from 

GPS or environmental data from external sensors. 

This enhances the accuracy of behavior recognition 

by allowing the system to differentiate between 

similar actions performed in different settings (e.g., 

walking in a park versus walking at home) [13,14]. 

Figure (1) shows schematically wearable embedded 

computing devices for the human body and some of 

their benefits. 

 

 
Fig. (1) Wearable embedded computing devices for the human 

body and some of their benefits [15] 

 

Wearable devices equipped with behavior 

recognition methods can monitor physical activity 

and health metrics, helping individuals track their 

exercise routines, manage chronic diseases, or detect 

early signs of health issues. For example, if a person’s 
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heart rate becomes unusually high during a workout, 

the device can alert them to potential health risks [16-

18]. One of the most critical applications is in elderly 

care, where wearable devices can detect falls or 

sudden changes in behavior that could indicate an 

accident or health emergency [19-22]. The device can 

automatically alert caregivers or emergency services. 

By recognizing a user’s behavior, wearable devices 

can offer tailored suggestions. For instance, if the 

system identifies patterns of sedentary behavior, it 

might recommend regular exercise breaks or provide 

insights into improving sleep quality [23-26]. 

Behavior recognition systems can also track subtle 

changes in physiological signals that may indicate 

stress, anxiety, or depression [27,28]. Wearables can 

provide feedback or recommendations for stress-

relief techniques, helping users manage their mental 

health [29]. 

While the potential of human behavior 

recognition in wearable devices is vast, several 

challenges remain. The accuracy of behavior 

detection can be affected by sensor noise, variability 

between individuals, and the difficulty of recognizing 

complex behaviors [30,31]. Additionally, ensuring 

privacy and security of the sensitive data collected by 

these devices is crucial [32]. Future advancements in 

artificial intelligence and sensor technologies are 

likely to improve the accuracy and versatility of 

human behavior recognition methods [33]. As 

wearable devices become smarter and more 

integrated into daily life, they will play an 

increasingly important role in healthcare, wellness, 

and personalized user experiences [34,35]. 

In this study, the stability of operation of a zone-

regulated machine was monitored and analyzed. This 

analysis was carried out under different operation 

conditions, mainly controlled by the forced-damping 

parameters. 

 

2. Experimental Part 

The experimental setup shown in Fig. (2) for a 

human behavior recognition system involves several 

carefully orchestrated components to ensure accurate 

data collection and processing. First, the environment 

is selected based on the behaviors to be studied—

indoor spaces like labs or offices, or outdoor areas 

such as parks or sidewalks. Controlled lighting and 

minimal background noise are preferable to enhance 

data quality. Sensors and devices are strategically 

positioned to capture relevant behavioral data. RGB 

cameras, depth sensors, or infrared cameras may be 

mounted at fixed locations or angles to ensure 

complete coverage of the target area. Wearable 

devices like accelerometers, gyroscopes, or heart rate 

monitors can supplement visual data, especially for 

dynamic activities. Microphones are used to capture 

speech or environmental sounds. Participants are 

instructed to perform specific behaviors or activities, 

such as walking, sitting, or waving, ensuring a 

comprehensive dataset. Diverse demographic 

representation is considered for generalizability. Data 

collection is synchronized using software 

frameworks like OpenCV for video processing or IoT 

platforms for sensor data. Sampling rates are 

optimized to capture fine-grained details without 

overwhelming storage or processing resources. 

Preprocessing is applied in real-time or post-

collection, involving noise reduction, normalization, 

and segmentation into meaningful units. Annotation 

tools are used to label the dataset, either manually or 

semi-automatically. The setup also includes 

computing hardware, such as GPUs, for processing 

data locally or cloud platforms for scalability. 

Continuous monitoring ensures the system is 

capturing accurate, high-quality data to train, test, and 

validate the behavior recognition models effectively. 

 

 
 

Fig. (2) A human behavior recognition technology 

 

3. Results and Discussion 

This experiment utilizes accuracy, recall, 

precision, and score as key metrics for evaluating the 

performance of the behavioral classification model. 

Accuracy is defined as the ratio of correctly predicted 

samples to the total number of predictions, reflecting 

the overall correctness of the model. Recall represents 

the proportion of correctly identified positive samples 

out of all true positive samples, measuring the 

model's sensitivity to the positive class. Precision 

quantifies the percentage of correctly identified 

positive samples among all samples predicted as 

positive, highlighting the reliability of the 

predictions. The score, a harmonic mean of precision 

and recall, evaluates both the model's precision and 

robustness. 

The experimental results reveal that the SAB-O–

LSTM model demonstrates remarkable convergence 

speed during training. As shown in Fig. (3), the 

training accuracy and error curves provide clear 
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evidence of the model's performance. The SAB-O–

LSTM achieves a high level of accuracy even in the 

early stages of training and shows consistent 

improvement as training progresses. This indicates its 

strong learning and generalization capabilities, as 

well as its ability to rapidly adapt and optimize its 

parameters to classify behaviors effectively. 

 

 
(a) 

 
(b) 

 

Fig. (3) Plot of training accuracy and the error rate of the 

experimental model on two types of datasets. 

 

4. Conclusions 

In conclusion, human behavior recognition in 

wearable devices is revolutionizing how we monitor 

and improve our health and daily activities. As 

technology continues to advance, these devices will 

offer even more personalized insights, enabling 

individuals to lead healthier and more informed lives. 
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